1. Find the slope of a ski run that descends 15 feet for every horizontal change of 24 feet.

SOLUTION:

Slope is the ratio of the rise, or vertical change, to the run, or horizontal change. Use the definition of slope and rise = -15 feet and run = 24 feet. Simplify.

slope =
$$\frac{\text{rise}}{\text{run}}$$

 $m = \frac{-15}{24} \text{ or } -\frac{5}{8}$

ANSWER:

$$-\frac{5}{8}$$

Find the slope of each line.

3.

SOLUTION:

Slope is the ratio of the rise, or vertical change, to the run, or horizontal change. Use the definition of slope and rise = -3 units and run = 4 units. Simplify.

slope =
$$\frac{\text{rise}}{\text{run}}$$

 $m = \frac{-3}{4} \text{ or } -\frac{3}{4}$

ANSWER:

$$-\frac{3}{4}$$

The points given in the table lie on a line. Find the slope of the line.

5.

X	0	1	2	3
y	3	5	7	9

SOLUTION:

Choose two points from the table to find the changes in the x- and y-values. Substitute the values from points (0, 3) and (3, 9) into the definition of slope. Simplify.

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$

 $m = \frac{9-3}{3-0}$
 $m = \frac{6}{3} \text{ or } 2$

ANSWER:

2

Find the slope of the line that passes through the pair of points.

7.
$$C(2, 5), D(3, 1)$$

SOLUTION:

Use the slope formula. Substitute $(x_1, y_1) = (2, 5)$ and $(x_2, y_2) = (3, 1)$. Simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{1 - 5}{3 - 2}$$

$$m = \frac{-4}{1} \text{ or } -4$$

ANSWER:

-4

9. **Justify Conclusions** Wheelchair ramps for access to public buildings are allowed a maximum of one inch of vertical increase for every one foot of horizontal distance. Would a ramp that is 10 feet long and 8 inches tall meet this guideline? Explain your reasoning to a classmate.

SOLUTION:

Translate "maximum of one inch of vertical increase for every one foot of horizontal distance" into the inequality $m \le \frac{1 \text{ in.}}{1 \text{ ft}}$ or $m \le \frac{1}{12}$ when all units are inches and m is the slope of the wheelchair ramp. Given that the ramp would

be 10 feet long and 8 inches tall, convert 10 feet to 120 inches. To find the slope of the ramp, use 8 inches for the rise and 120 inches for the run. This represents a slope of $\frac{8}{120}$ or $\frac{1}{15}$.

 $\frac{1}{15} < \frac{1}{12}$, so the ramp meets the guidelines.

ANSWER:

yes;
$$\frac{1}{15} < \frac{1}{12}$$

12. **Persevere with Problems** Two lines that are parallel have the same slope. Determine whether quadrilateral *ABCD* is a parallelogram. Justify your reasoning.

SOLUTION:

Find the slope of each side of the parallelogram by finding the changes in the x- and y-values.

Slope of \overline{AB} : substitute the values from points (1, 0) and (9, 1) into the definition of slope. Simplify.

$$slope = \frac{change in y}{change in x}$$

$$m = \frac{1-0}{9-1}$$

$$m = \frac{1}{8}$$

Slope of \overline{BC} : substitute the values from points (9, 1) and (10, 4) into the definition of slope. Simplify.

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$

$$m = \frac{4-1}{10-9}$$

$$m = \frac{3}{1}$$
 or 3

Slope of \overline{CD} : substitute the values from points (10, 4) and (2, 3) into the definition of slope. Simplify.

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$

 $m = \frac{3-4}{2-10}$
 $m = \frac{-1}{-8} \text{ or } \frac{1}{8}$

Slope of \overline{DA} : substitute the values from points (2, 3) and (1, 0) into the definition of slope. Simplify.

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$

 $m = \frac{0-3}{1-2}$
 $m = \frac{-3}{-1} \text{ or } 3$

 \overline{AB} and \overline{CD} both have slope $\frac{1}{8}$, so these sides are parallel. \overline{BC} and \overline{DA} both have slope 3, so these sides are parallel. Since both pairs of sides are parallel, ABCD is a parallelogram.

ANSWER:

Slope of
$$\overline{AB}$$
: $m = \frac{1-0}{9-1}$ or $\frac{1}{8}$
Slope of \overline{BC} : $m = \frac{4-1}{10-9}$ or 3
Slope of \overline{CD} : $m = \frac{3-4}{2-10}$ or $\frac{1}{8}$
Slope of \overline{DA} : $m = \frac{0-3}{1-2}$ or 3

Since \overline{AB} and \overline{CD} are parallel, and \overline{BC} and \overline{DA} are parallel, quadrilateral ABCD is a parallelogram.

- 13. Model with Mathematics Give three points that lie on a line with each of the following slopes.
 - **a.** 5
 - **b.** $\frac{1}{5}$
 - **c.** -5

SOLUTION:

Sample answers are given.

a. 5

A slope of 5 could be rewritten $\frac{5}{1}$. Since slope is defined as $\frac{Rise}{Run}$, this slope is a rise of 5 and a run of 1. The first point (1, 1) is randomly chosen. The next point would be one unit to the right and five units up.

$$(1+1, 1+5) = (2, 6)$$

From there the next point would be one more unit to the right and another five units up.

$$(2+1, 6+5) = (3, 11)$$

b. $\frac{1}{5}$

Since slope is defined as $\frac{Rise}{Run}$, this slope is a rise of 1 and a run of 5. The first point (1, 1) is randomly chosen. The next point would be one unit to the right and five units up.

$$(1+5, 1+1) = (6, 2)$$

From there the next point would be one more unit to the right and another five units up.

$$(6+5, 2+1) = (11, 3)$$

c. -5

A slope of -5 could be rewritten $\frac{5}{-1}$. Since slope is defined as $\frac{Rise}{Run}$, this slope is a rise of 5 and a run of -1. The first point (1, 1) is randomly chosen. The next point would be one unit to the right and five units up.

$$(1 - 1, 1 + 5) = (0, 6)$$

From there the next point would be one more unit to the left and another five units up.

$$(0-1, 6+5) = (-1, 11)$$

ANSWER:

Sample answers are given.

15. Wyatt is flying a kite in the park. The kite is a horizontal distance of 24 feet from Wyatt's position and a vertical distance of 72 feet. Find the slope of the kite string.

SOLUTION:

Slope is the ratio of the rise, or vertical change, to the run, or horizontal change. Use the definition of slope and rise = 72 feet and run = 24 feet. Simplify.

$$slope = \frac{rise}{run}$$

$$m = \frac{72}{24} \text{ or } 3$$

ANSWER:

3

Find the slope of the line.

17.

SOLUTION:

Slope is the ratio of the rise, or vertical change, to the run, or horizontal change. Use the definition of slope and rise = -3 units and run = 1 unit. Simplify.

slope =
$$\frac{\text{rise}}{\text{run}}$$

$$m = \frac{-3}{1}$$
 or -3

ANSWER:

-3

Use Math Tools The points given in the table lie on a line. Find the slope of each line.

19.

x	-2	-1	1	2
y	-4	-2	2	4

SOLUTION:

Choose two points from the table to find the changes in the x- and y-values. Substitute the values from points (-2, -4) and (2, 4) into the definition of slope. Simplify.

slope =
$$\frac{\text{change in } y}{\text{change in } x}$$
$$m = \frac{4 - (-4)}{2 - (-2)}$$
$$m = \frac{8}{4} \text{ or } 2$$

ANSWER:

2

Find the slope of the line that passes through the pair of points.

21.
$$G(-6, -1)$$
, $H(4, 1)$

SOLUTION:

Use the slope formula. Substitute $(x_1, y_1) = (-6, -1)$ and $(x_2, y_2) = (4, 1)$. Simplify.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{1 - (-1)}{4 - (-6)}$$

$$m = \frac{2}{10} \text{ or } \frac{1}{5}$$

ANSWER:

1 -5